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Abstract. In the present article we study the energy levels of a 2D hydrogenic atom when
a constant magnetic field is applied. We compute the energy spectrum with the help of a
generalization of the mesh point technique recently proposed by Schwartz. We also estimate,
via a variational method, the upper energy bound for small and large values of the external
magnetic field. We show that the results obtained by O Mustafa (1993J. Phys.: Condens.
Matter 5 1327) have to be modified in the weak-magnetic-field regime.

The study of two-dimensional hydrogen-like atoms in magnetic fields has been the object of
a series of publications during the last decade. The physical motivation for this problem lies
in the study of quantum well and superlattice systems. Probably the best known superlattice
configuration consists of regions of GaAs which act as wells for the conduction electrons
separated by regions of Ga1−xAl xAs which act as barriers.

The Hamiltonian describing the Coulomb interaction between a conduction electron and
a donor impurity centre when a constant magnetic fieldB is applied perpendicular to the
x–y plane can be written as

H = −∇2 + γLz − 2

ρ
+ γ 2ρ2

4
(1)

where we have chosen the vector potential

A = B

2
(−y, x, 0) = Br

2
êϕ

in the symmetric gauge. The coupling constantγ, which measures the ratio between the
magnetic energy and Coulomb energy, is defined asγ = ε2h̄3B/(ce3m∗2) wherem∗ is the
effective mass, andε the dielectric constant of the host material.∇2 is the two-dimensional
Laplacian, andLz is the angular momentum operator−i h̄ ∂/∂φ with eigenvalue ¯hm. The
units of energy are given in terms of the effective Rydberg constantR∗

0 = m∗e4/2h̄2ε2 and
the effective Bohr radiusa∗ = h̄2ε/m∗e2, respectively.

The substitution

9 = eimϕ

√
2π

u(ρ)√
ρ

(2)
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reduces the Schrödinger equationH9 = E9 to the following second-order ordinary
differential equation:[

− d2

dρ2
+

(
m2 − 1

4

)
1

ρ2
+ γ 2ρ2

4
− 2

ρ
+ mγ − E

]
u(ρ) = 0. (3)

It is well known that exact solutions of equation (3) cannot be expressed in closed form
in terms of special functions. There are analytical expressions for the energy for particular
values ofγ andm, as pointed out by Lozanskii and Firsov [1] and more recently by Taut
[2, 3]. Because of the importance of the problem in question, different techniques have
been used in order to obtain the eigenvaluesE in equation (3). In addition to numerical
and perturbation methods [4, 5], the two-point Padé approximation [6, 7] has been shown
to be of help in computing the different values of the energy not only in the regimes
where the magnetic field is strong or negligible, but also for intermediate magnetic field
strengths. Recently, Mustafa [10] has computed the energy levels for a 2D donor impurity
in the presence of a magnetic field. Using the shifted 1/N expansion method proposed
by Imbo et al [8], with an N -dimensional Hamiltonian [9], he obtains the 1s, 2p− and
3d− energy levels, showing that his results are in good agreement with those reported
by Mart́ın et al [7]. There is disagreement for the 2p− (m = −1, nρ = 0) and 3d−

(m = −2, nρ = 0) states asγ → 0. Mustafa claims that such a disagreement could be
attributed to a bad selection of the magnetic quantum numbern made by Mart́ın et al. In
order to reinforce his thesis, he refers to the work by Whittaker and Elliot [4] which takes
into account the modification of the Landau levels due to the presence of impurities. It
is the purpose of the present article to show that the disagreement reported by Mustafa
cannot be imputed to the choice of the quantum numbernρ instead ofn [11], nor to the
presence of impurities in the model, and in fact may be due to a simple computational
error. Mustafa uses expression (1) as his Hamiltonian, without the ‘impurity’ correction
proposed by Whittaker ([(mh − me)/(mh + me)]mγ instead ofmγ in the termγLz of (1)).
Therefore the Hamiltonian used by Mustafa coincides with that presented by Martı́n et al.
Since neither the Martı́n nor the Mustafa results are accurate, we will determine the validity
of these methods by means of the Schwartz [12] interpolation technique as well as the well
known variational method [13].

In order to apply the variational method to our problem, we look for a trial wave
function. Since equation (3) reduces to the hydrogen atom equation whenγ = 0, we can
consider as a basis forγ � 1 the hydrogen wave funtions9H . Since〈9H |H | 9H 〉 < E,
we obtain an upper bound of the energy for small values of the parameterγ . The solution
of equation (3) whenγ = 0 is

uH (ρ) = Dm,ne−ρ/(1/2+nρ+|m|)ρ(|m|+1/2)L

(
nρ, 2 |m| , 2ρ

(1/2 + nρ + |m|)
)

(4)

whereDm,n is a normalization constant, andL(a, b, x) are the Laguerre polynomials [14].
Consequently the energy spectrum in the zero-field limit takes the form

EH = − 1

(1/2 + nρ + |m|)2
. (5)

Conversely, for large values ofγ, a good trial basis is that of the spherical oscillator. In
this case the solution of equation (3) has the form

uosc(r) = Cm,ne−γρ2/4ρ(|m|+1/2)L

(
nρ, |m| , γ

2
ρ2

)
(6)
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and, in the high-field limit, the energy levels are

Eosc = γ (2nρ + |m| + m + 1). (7)

Then, for the state 1s (m = 0, nρ = 0) the two trial functions to be used for small and large
values ofγ are respectively

uH(1s) = 4e−2ρρ1/2 uosc(1s) = √
γ e−(1/4)γρ2

ρ1/2. (8)

Substituting (8) into the expression

〈uH,osc |H | uH,osc〉 = ẼH,osc (9)

where the tilde indicates that the energy is obtained via the variational method, we readily
obtain

ẼH(1s) = −4 + 3

32
γ 2 Ẽosc(1s) = −

√
2πγ + γ. (10)

Analogously, we have for the 2p− level (m = −1, nρ = 0)

uH(2p−) = 27/23−5/2e−2ρ/3ρ3/2 uosc(2p−) =
√

γ

2
e−(γ /4)ρ2

ρ3/2 (11)

which, after substituting into (9), gives as the result

ẼH(2p−) = −4

9
+ 45

16
γ 2 − γ Ẽosc(2p−) = −1

2

√
2πγ + γ. (12)

Finally, we proceed to compute the energy spectrum for the 3d− level (m = −2, nρ = 0).
In this case the trial wave function takes the form

uH(3d−) = 29/25−7/23−1/2e−2ρ/5ρ5/2 uosc(3d−) = 2−3/2γ 3/2e−(1/4)γρ2
ρ5/2 (13)

and substituting (13) into (9) we obtain

ẼH(3d−) = − 4

25
− 2γ + 525

32
γ 2 Ẽosc(3d−) = −3

8

√
2πγ + γ. (14)

The numerical computations of the energy spectra associated with equation (3) will be
carried out with the help of the Schwartz method [12] which is a generalization of the
mesh point technique for numerical approximation of functions. This method gives highly
accurate results given a thoughtful choice of the reference function. For equation (3) we
chose as the interpolation function

f (ρ) =
∑
m

fm

u(ρ)

(ρ − rm)am

(15)

where

u(ρ) = sin[π(ρ/h)1/2]. (16)

rm is a zero ofu(ρ), am is a zero of its derivative, andh is the step of the quadratic mesh.
The use of this scheme for equation (3) leads to an algebraic eigenvalue problem, giving
as a result a non-symmetric matrix to be diagonalized in order to obtain the energy values.
The accuracy of this technique has been verified using the analytic results obtained by Taut
[2] for the excited states. The calculations were performed using up to 500 mesh points
and a step of 10−5, obtaining in this way an accuracy of at least eight digits. It is worth
mentioning that a finite-difference scheme with a linear mesh of up to 2000 points failed to
provide a good estimation of the ground state for the 2D hydrogen atom, probably because
of the strong singularity at the origin.
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Figure 1. The energy of the 1s state as a function ofγ ′. The thin solid line was obtained by
numerical methods; the dotted line corresponds to the hydrogen basis; and the thick solid line
was obtained by using the oscillator as the wave function.

Figure 2. The energy of the 2p− state as a function of the magnetic parameterγ ′.

In order to establish a better comparison between the results (10), (12), and (14), and
the energy spectra computed with the help of the Schwartz method [12] with those exhibited
by Mustafa [10], we plot the energy againstγ ′ = γ /(γ + 1) as the horizontal scale.

As we can see from figure 1, figure 2 and figure 3, no anomalous behaviour in the
vicinity of γ = 0 is observed. Since the energy levels (10), (12), and (14) were obtained
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Figure 3. The energy of the 3d− state as a function ofγ ′.

with the help of the variational method, we have that in the three casesẼH,Osc > E. It is
straightforward to see that the solutions presented by Mustafa [10] satisfyEMustafa > Ẽ > E

as γ → 0, and therefore they are ill-behaved for small values of the magnetic field. The
variational solution obtained using the hydrogen basis is in good agreement with the results
obtained by Mart́ın et al and those computed with the help of the Schwartz interpolation
technique, which has been shown to be very powerful in obtaining accurate numerical
results. It is worth mentioning that the bizarre behaviour reported by Mustafa [10] for the
2p− and 3d− states cannot be imputed to a breakdown of the shifted 1/N expansion in
the weak-field limit. In fact, using the equations presented by Mustafa [10] based on the
results reported by Imboet al [8], with the right quantum numbers for the 2p− (m = −1,
nρ = 0) and 3d− (m = −2, nρ = 0) levels, one finds that the shifted 1/N method is in
good agreement with the results presented in this article and by Martı́n et al.

It would be interesting to analyse the 2D hydrogen problem when the spin and relativistic
effects are not negligible. This will be the object of a forthcoming publication.
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